新幹線が遅延した時の払い戻しについて(特に学割を使っていた今回の場合の)

はじめに

2018年10月19日姫路駅で新幹線と人間が衝突という事故が発生.
当該車両の先頭車両に座っていて,その後払い戻しやなんやがよく分からなかったので備忘録.

続きを読む

僕とTwitterの思い出話

はじめに

本日をもってTwitterのUserStream*1が徐々に死んでいくことになった.
段階的に殺していったりとかはあるけれど,その辺りは種々のブログとかを見た方が早いので割愛.
US停止に際して幾人かがポエムを書いていたので僕も書きたいと思った次第である.

と思ったのだけれど書き終わった後にこれポエムじゃなくてただの一エンドユーザの振り返りだなとなってしまったので最初に記しておきます.

*1:備忘録:TimeLineを自動で流すことのできるUserStreams APIが提供されていた.

続きを読む

ゲーム「ナナシス」のライブではなく,「ナナスタ」のアイドルとしての武道館ライブ

はじめに

2018年7月20日(金),Tokyo 7th Sisters(以下ナナシス)のメモリアルライブ「Melody in the Pocket」が武道館であったのだけどそれの感想.
東京から帰って落ち着いたし,色々感情があるのでちょっと書き連ねたいなと言う気持ち.

続きを読む

C1-級である正則行列のdetの微分

はじめに

ブログのネタがないので.計算するだけなのだけれど.

主張

 A:[0,T]\to\mathbb{R}^{d\times d}:$C^{1}$-級,正則行列とする.
この時次が成り立つ: \begin{align} \frac{\mathrm{d}}{\mathrm{d}t}\det A(t)=\mathrm{tr}\left(A^{-1}(t)\frac{\mathrm{d}}{\mathrm{d}t}A(t)\right) \det A(t). \end{align}

続きを読む

右連続な確率過程のsupを非可算集合の範囲で取っても可測

はじめに

タイトルどう書けばいいんかわかんない.

可測関数列 f_nに対して \displaystyle\limsup_{n\to\infty}f_n\displaystyle \sup_{n\in\mathbb{N}}f_nが可測になることはLebesgue積分の講義で学ぶことである.
ここで\limsupなどは可算集合\mathbb{N}上で動かしている.
これの動かす範囲が非可算集合[0,t]上でも右連続ならば同様のことが言えることを示す.

出典というかは谷口説男「確率微分方程式」のDoobの不等式の証明の時に問題になったので,それ.一応脚注で測度論的言葉でも書いておいた.

続きを読む

日本における大学進学率と学位取得率についてざっくりと

はじめに

先日Twitter

といった画像が流れてきた.画像を要約すれば「学位取得率は日本だけ男性が多い」といったもの.これの確認.
ついでに「学位取得率が50%とかそんな少ないわけ無いでしょ」みたいなツイートも見られたのでそれの確認.

但し厳密に測ろうとすると過年度高卒者や留年生など考える必要のあるものが多すぎるのでざっくりと考える.

またこの記事には計算過程で2,3%の誤差があるというレベルの誤りが含まれています.また煩雑さから若干投げているところがあります.

続きを読む